Welcome to the portfolio of Deo Shankar, a seasoned Multi-Cloud Solutions Architect with over 13 years of experience in designing and implementing enterprise-scale cloud solutions.
Currently working as an Architect at Tiger Analytics, previously held positions at Oracle Corporation, Paytm, Xebia, Nagarro, Ericsson, and Wipro.
AWS Solutions Architect Professional, AWS Machine Learning Specialty, Google Cloud Professional Cloud Architect, Google Cloud Professional ML Engineer, Databricks Certified Data Engineer, Oracle Cloud Infrastructure Architect Professional
Email: jha.deo1771@gmail.com | Phone: +91-9891698505 | Location: Noida, India
LinkedIn: https://linkedin.com/in/deo-shankar | GitHub: https://github.com/deosha
Let's discuss how I can help with your cloud architecture needs
Or email directly: jha.deo1771@gmail.com
Phone: +91-9891698505
๐ง jha.deo1771@gmail.com | ๐ฑ +91-9891698505 | ๐ deos.dev
Semantic Protocol Layer Translation for AI Agent Interoperability
Novel approach to bidirectional protocol translation enabling seamless communication between heterogeneous AI agents
secscan-cli
Multi-language security vulnerability scanner supporting Python, JavaScript, Java, and Go codebases
$3M lost in potential sales. Customer trust damaged. My architecture. My fault.
The Problem:
The 8-Week Rebuild:
Result: Scaled from 1M crash โ 5M+ TPS success. No downtime since.
"Failure is the best teacher. This disaster made me the architect I am today."
You're not Google. You don't need K8s for 10 containers. ECS Fargate or even EC2 with systemd will save you hundreds of engineering hours. I've seen startups die while perfecting their K8s setup instead of shipping features.
N+1 query problems, complex caching, security nightmares (query depth attacks), and junior developers creating performance disasters. REST with proper versioning beats GraphQL 9 times out of 10. I've ripped out GraphQL from 3 projects and never looked back.
PostgreSQL > MongoDB for 95% of use cases. EC2 > Kubernetes for <100 containers. REST > GraphQL. Monolith-first > Microservices-first. I chose "boring" tech at Paytm and saved $2M/year while others debugged their "cutting-edge" distributed traces.
I write 70% less boilerplate now. GitHub Copilot, ChatGPT, and Claude are force multipliers. Developers fighting AI tools are like accountants refusing Excel in the 1980s. Adapt or become irrelevant.
Unless you're Netflix, pick one cloud and go deep. Multi-cloud means lowest common denominator features, 3x the complexity, and none of the expertise. I've seen more companies fail from multi-cloud complexity than from vendor lock-in.
"Strong opinions, loosely held. Prove me wrong and I'll buy you coffee โ"
Director - Cloud Solution Engineering at Oracle
Managed Deo directly at Oracle
View on LinkedIn โ"I have known Deo for last 2 years since the time he has joined Oracle. He has excellent technical knowledge around cloud solutions right from automation, IaaS, DevOps to Networking etc. He articulates his thoughts very well while delivering a session or having a deep technical conversation with customers or colleagues. His positive attitude and never say 'No' even in a toughest of situations is an asset for any organization. Above all a great human being."
โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โ โ โโโโโโโ โโโโโโโโ โโโโโโโ โโโโโโโโโโโ โโโ โโโโโโ โโโโ โโโโโโ โโโ โโโโโโ โโโโโโโ โ โ โโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโ โโโโโโโโโโโโโโโโ โโโโโโ โโโโโโโโโโโโโโโโโโโโโ โ โโโ โโโโโโโโโ โโโ โโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโ โโโโโโโโโโโโโโโโโ โ โโโ โโโโโโโโโ โโโ โโโ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโโโโโโโโโโโโโ โโโโโโโโโโโ โโโโโโ โโโโโโ โโโโโโโโโ โโโโโโ โโโโโโ โโโโ โ โโโโโโโ โโโโโโโโ โโโโโโโ โโโโโโโโโโโ โโโโโโ โโโโโโ โโโโโโโโ โโโโโโ โโโโโโ โโโโ โ โ โ MULTI-CLOUD SOLUTIONS ARCHITECT v13.0.0 โ โ [ AWS | GCP | OCI | AZURE | Databricks | Snowflake] โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ
Available Commands: โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## PROFILE whoami Display professional summary skills Show technical expertise experience List work experience projects View multi-cloud success stories certifications Display all certifications education Show educational background contact Get contact information stats Show performance metrics & GitHub activity ## TECHNICAL architecture View cloud architecture patterns blog Read technical publications ssh Connect to cloud environment docker Show running containers kubectl Display Kubernetes cluster status terraform Show infrastructure as code ## SYSTEM portfolio Return to portfolio view download-cv Download full CV clear Clear terminal help Show this help menu neofetch System information matrix Enter the Matrix exit Exit terminal mode Type a command to explore...
USER PROFILE LOADED โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Name: Deo Shankar Role: Multi-Cloud Solutions Architect Focus: AI/ML & Generative AI Experience: 13+ Years Location: Noida, India ## SUMMARY Solutions Architect with 13+ years designing distributed systems at scale. Specialized in AWS cloud architecture, ML infrastructure, and event-driven systems. Led architecture for systems handling 5M+ daily transactions with 99.9% availability. ## KEY ACHIEVEMENTS โข 5M+ Daily Transactions handled with 99.9% availability โข 15TB Daily Data Processing at scale โข 40% Cost Reduction achieved across projects โข Built agentic RAG with 87% F1 score for 2M documents โข 60% reduction in AI hallucinations via MCP orchestration ## LEADERSHIP & TEAM MANAGEMENT โข Managing 25+ engineers across US, India, and Europe โข Technical advisor for C-suite executives on AI strategy โข Led cross-functional teams (Engineering, Product, Sales) โข Established AI Center of Excellence (15 members) โข Mentored 30+ engineers to senior positions โข Speaker at 10+ cloud/AI conferences globally [System Info: Profile loaded successfully]
LOADING TECHNICAL EXPERTISE... โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## AWS SERVICES โโโ Compute: Lambda, EKS, EC2 โโโ AI/ML: Bedrock, SageMaker, Personalize โโโ Storage: S3, EBS, EFS โโโ Database: DynamoDB, Aurora, RDS โโโ Analytics: Kinesis, Glue, Athena, Redshift โโโ Search: OpenSearch โโโ Workflow: Step Functions ## GCP SERVICES โโโ AI/ML: Vertex AI, AutoML โโโ Compute: Cloud Run, GKE, Compute Engine โโโ Analytics: BigQuery, Dataflow, Pub/Sub โโโ Storage: Cloud Storage, Firestore โโโ Database: Cloud SQL, Spanner โโโ Workflow: Composer, Dataproc ## OCI SERVICES โโโ AI/ML: Data Science, Generative AI โโโ Compute: Functions, OKE, Compute โโโ Database: Autonomous DB, MySQL HeatWave โโโ Streaming: Streaming, Data Flow โโโ Storage: Object Storage ## AI/ML & GENAI TECHNOLOGIES โโโ RAG Frameworks: LangChain, LlamaIndex, Semantic Kernel โโโ Vector Databases: Pinecone, Weaviate, ChromaDB, Qdrant, FAISS โโโ LLM Platforms: Claude (Anthropic), GPT-4 (OpenAI), Gemini (Google), Llama โโโ Prompt Engineering: DSPy, Guidance, Few-shot/Chain-of-Thought prompting โโโ ML Frameworks: PyTorch, TensorFlow, JAX, Hugging Face โโโ Embeddings: OpenAI Ada, Cohere, Sentence Transformers ## CLOUD-AGNOSTIC TOOLS โโโ IaC: Terraform, Pulumi, CloudFormation, ARM Templates โโโ Containers: Kubernetes, Docker, Helm, Istio โโโ CI/CD: GitOps, Jenkins, GitHub Actions, ArgoCD โโโ Monitoring: Prometheus, Grafana, ELK Stack, DataDog โโโ ML Ops: MLflow, Kubeflow, Weights & Biases, Neptune โโโ Data: Apache Spark, Kafka, Databricks, Airflow, Snowflake, dbt [Skills matrix loaded: 100+ technologies]
WORK EXPERIENCE LOG โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ [2023-Present] ARCHITECT @ Tiger Analytics โโโ Built agentic RAG with LangGraph + MCP + Bedrock (2M docs, 87% F1, autonomous agents) โโโ Built MCP-based agent orchestration (30+ AI agents, 60% reduction in hallucinations) โโโ Built ML model to optimize Docker images (100+ clients, 95% optimal in 30sec) โโโ Achieved SOC2 compliance: KMS encryption, mTLS, CloudTrail + Splunk audit logging โโโ Lead team of 25+ engineers across 3 geographic regions โโโ Crisis: Black Friday outage fixed in 2 hours with ProxySQL + circuit breakers [2020-2022] SENIOR CLOUD TECHNICAL ENGINEER @ Oracle Corporation โโโ Migrated 50TB Oracle DB to OCI using GoldenGate (zero downtime, 30% cost reduction) โโโ Built facial recognition pipeline on OKE with 4x A100s (500K images, bias mitigation) โโโ Achieved SOC2 compliance: KMS encryption, mTLS, CloudTrail + Splunk audit logging โโโ Led OCI competitive analysis ($20M+ in wins) [2019-2020] TECHNICAL LEAD @ Paytm โโโ Crisis: Black Friday outage (8x traffic spike) - fixed with ProxySQL in 2 hours โโโ Built fraud detection with SageMaker + Kinesis (solved 40K WCU DynamoDB limit) โโโ Reduced cart abandonment 15% ($2M ARR) by optimizing API 800msโ200ms [2018-2019] SENIOR CONSULTANT @ Xebia IT Architects โโโ Led AWS adoption for 10+ enterprises โโโ Built recommendation engine on AWS Personalize (3M users) [2016-2018] ASSOCIATE LEAD, TECHNOLOGY @ Nagarro Software โโโ Built ML models for automotive simulations (60% compute reduction) โโโ Implemented predictive maintenance using IoT data [Experience loaded: 13+ years, 50+ projects]
MULTI-CLOUD SUCCESS STORIES โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## Agentic RAG Platform with LangGraph + MCP Stack: LangGraph, MCP Protocol, AWS Bedrock, OpenSearch Scale: 2M+ documents, autonomous agents self-correct Impact: 87% F1 score, 60% less hallucinations, 90% L1 query automation โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## Real-time Analytics on GCP Stack: BigQuery, Dataflow, Pub/Sub, Vertex AI Scale: 5TB daily processing Impact: Sub-second queries, 100K predictions/sec โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## Snowflake Data Mesh Stack: Snowflake, DBT, Airflow, Terraform Scale: Multi-region, 20+ teams Impact: 70% faster analytics, $2M annual savings โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## OCI ML Platform for Manufacturing Stack: OCI Data Science, A100 GPUs, Autonomous DB Scale: 10TB daily processing Impact: 99.2% defect detection accuracy โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## Fraud Detection System Stack: AWS SageMaker, Kinesis, Lambda, DynamoDB Scale: 5M transactions per second Impact: $12M+ fraud losses prevented [Projects loaded: 25+ GenAI deployments across clouds]
CERTIFICATION REGISTRY โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## AWS CERTIFICATIONS โโโ [โ] AWS Solutions Architect - Professional โโโ [โ] AWS Machine Learning - Specialty โโโ [โ] AWS DevOps Engineer - Professional โโโ [โ] AWS Well-Architected Partner ## GCP CERTIFICATIONS โโโ [โ] Google Cloud Professional Cloud Architect โโโ [โ] Google Cloud Professional ML Engineer โโโ [โ] GCP Partner Specialization - ML ## ORACLE CERTIFICATIONS โโโ [โ] Oracle Cloud Infrastructure Architect Professional โโโ [โ] OCI Cloud Excellence Implementor ## DATABRICKS CERTIFICATIONS โโโ [โ] Databricks Data Engineer Professional โโโ [โ] Databricks Machine Learning Engineer Professional โโโ [โ] Databricks Solutions Architect Champion ## ADDITIONAL CERTIFICATIONS โโโ [โ] Multi-Cloud Migration Expert โโโ [โ] FinOps Certified Practitioner [Total Certifications: 10+ across AWS, GCP, OCI, Databricks]
EDUCATION RECORDS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## M.S Data Science & Management Institution: IIM & IIT Indore Period: 2022-2024 Status: [COMPLETED] ## B.Tech Computer Science & Engineering Institution: JUET Period: 2008-2012 Status: [COMPLETED] ## THOUGHT LEADERSHIP โโโ Semantic Protocol Layer Translation: Bidirectional protocol for AI agent interoperability (Research Paper) โโโ Created secscan-cli: Open Source Multi Language Security Scanner โโโ Articles: "medium.com/@deoshankar" [Education loaded successfully]
CONTACT INFORMATION โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## CONNECT WITH ME Email: jha.deo1771@gmail.com Phone: +91-9891698505 Location: Noida, India LinkedIn: linkedin.com/in/deo-shankar GitHub: github.com/deosha ## BADGES & ACHIEVEMENTS โโโ AWS Badges: 5+ โโโ GCP Badges: 5+ โโโ OCI Badges: Multiple [Contact info loaded. Feel free to reach out!]
PERFORMANCE METRICS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## IMPACT STATISTICS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ Daily Transactions: 5M+ with high availability โ โ System Availability: 99.9% across critical systems โ โ Data Processing: 15TB daily at scale โ โ Cost Reduction: 40% average achieved โ โ AI Accuracy: 87% F1 score on RAG platform โ โ Hallucination Reduced: 60% via MCP orchestration โ โ Teams Led: 100+ engineers trained โ โ Migrations Completed: 50+ enterprise cloud migrations โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## REAL-TIME SYSTEM METRICS Current Production Systems Under Management โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ LIVE SYSTEMS โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค โ Payment Gateway [โโโโโโโโโโโโโโโโโโโโ] 5.2M TPS โ โ RAG Pipeline [โโโโโโโโโโโโโโโโโโโโ] 2M docs/day โ โ ML Inference [โโโโโโโโโโโโโโโโโโโโ] 100K req/sec โ โ Data Processing [โโโโโโโโโโโโโโโโโโโโ] 15TB daily โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## TECHNOLOGY ADOPTION TIMELINE 2012: AWS, ETL (DMExpress), Oracle DB 2014: Spring Boot, Hibernate, JMS, SNMP 2016: Docker, Kubernetes, Terraform, GCP, Azure 2017: Microservices, Jenkins, CI/CD Pipelines 2018: Service Mesh, GitOps, Multi-cloud Strategy 2019: EKS, DynamoDB, Kinesis, SageMaker 2020: Oracle Cloud, GoldenGate, OKE 2021: Databricks, Snowflake, ML Platforms 2022: Vertex AI, Early GenAI exploration 2023: Bedrock, LangChain, Vector DBs, RAG 2024: LangGraph, Claude, Agentic AI Systems 2025: MCP Protocol (Nov 2024 release - Early Adopter) [Systems Operating at: 99.9% Availability | <1s P99 Latency]
CLOUD ARCHITECTURE PATTERNS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## AGENTIC RAG ARCHITECTURE (LangGraph + MCP) โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ User Queries โ โโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโโผโโโโโโโโโโโโโ โ API Gateway โ โ (Rate Limiting, Auth) โ โโโโโโโโโโโโโโฌโโโโโโโโโโโโโ โ โโโโโโโโโโโโโโโโโโผโโโโโโโโโโโโโโโโโ โ LangGraph Orchestrator โ โ (Self-correction loops, 87% F1)โ โโโโโโโโโโฌโโโโโโโโโโโโโโโโฌโโโโโโโโโ โ โ โโโโโโโโโโโโโโผโโโโโโโ โโโโโโผโโโโโโโโโโโโโโโ โ MCP Protocol โ โ AWS Bedrock โ โ (30+ AI Agents) โ โ Claude/Titan โ โโโโโโโโโโโโโโฌโโโโโโโ โโโโโโฌโโโโโโโโโโโโโโโ โ โ โโโโโโโโโผโโโโโโโโโโโโโโโโผโโโโโโโโ โ OpenSearch Vector DB โ โ (2M+ documents, 100ms) โ โโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโผโโโโโโโโโโโ โ S3 Data Lake โ โ (Document Store) โ โโโโโโโโโโโโโโโโโโโโโโ ## EVENT-DRIVEN PAYMENT ARCHITECTURE (5M TPS) โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ Payment Requests โ โโโโโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโโผโโโโโโโโโโโโ โ API Gateway โ โ (ProxySQL, Circuit โ โ Breakers - 2hr fix) โ โโโโโโโโโโโโโฌโโโโโโโโโโโโ โ โโโโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโ โ โ โโโโโโโโโผโโโโโโโโโ โโโโโโโโโโโโผโโโโโโโโโโโ โ Kinesis/Kafka โ โ Lambda Functions โ โ Event Stream โ โ (CQRS Pattern) โ โโโโโโโโโฌโโโโโโโโโ โโโโโโโโโโโโฌโโโโโโโโโโโ โ โ โโโโโโโโโผโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโผโโโโโโโโโ โ DynamoDB (40K WCU) โ โ (Sharding strategy for scale) โ โโโโโโโโโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ โโโโโโโโโโโโผโโโโโโโโโโโ โ SageMaker Fraud โ โ Detection Model โ โ ($12M prevented) โ โโโโโโโโโโโโโโโโโโโโโโ ## COST-OPTIMIZED MULTI-CLOUD PATTERN โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ Workload Distribution โ โโโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโโโโโโโโโโค โ Compute: EKS โ Analytics: โ AI/ML: Bedrock + โ โ (Spot 65% โ BigQuery โ Vertex AI โ โ savings) โ (Best TCO) โ (Model selection) โ โโโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโดโโโโโโโโโโโโโโโโโโโโโโโ โ โ โ โโโโโโผโโโโโ โโโโโโผโโโโโ โโโโโโโผโโโโโโ โ AWS โโโโโโ GCP โโโโโโโ OCI โ โโโโโโโโโโโ โโโโโโโโโโโ โโโโโโโโโโโโโ โ โโโโโโโโโโโโโผโโโโโโโโโโโโ โ Unified Data Mesh โ โ (Snowflake/DBT) โ โโโโโโโโโโโโโโโโโโโโโโโโโ [Trade-offs: Eventual consistency for 10x throughput, 95% optimal in 30sec vs 100% in 5min] ## ADDITIONAL ARCHITECTURE PATTERNS 1. DOCKER IMAGE OPTIMIZATION PIPELINE โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ Dockerfile Analysis Platform โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค โ Input: 3.5GB Images โ Output: 350MB Images โ โ โ โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ โ โHeuristic โโ โ Layer โโ โ Multi- โ โ โ โ Rules โ โ Merge โ โ Stage โ โ โ โโโโโโโโโโโโ โโโโโโโโโโโโ โโโโโโโโโโโโ โ โ โ โ Results: $300K/month saved | 95% adoption โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ 2. MCP-BASED AGENT ORCHESTRATION โโโโโโโโโโโโโโโโโโโ โ MCP Protocol โ โ Message Bus โ โโโโโโโโโโฌโโโโโโโโโโ โ โโโโโโโโโโโโโโโผโโโโโโโโโโโโโโฌโโโโโโโโโโโโโโ โผ โผ โผ โผ โโโโโโโโโโ โโโโโโโโโโ โโโโโโโโโโ โโโโโโโโโโ โ Data โ โ ML โ โ Code โ โ Ops โ โ Agents โ โ Agents โ โ Agents โ โ Agents โ โโโโโโโโโโ โโโโโโโโโโ โโโโโโโโโโ โโโโโโโโโโ 5 8 10 7 Hallucination: -60% | Tool Reuse: 80% | Speed: 3x 3. ZERO-DOWNTIME MIGRATION ARCHITECTURE โโโโโโโโโโโโโโโโ GoldenGate โโโโโโโโโโโโโโโโ โ On-Premise โ==================>โ OCI โ โ Oracle DB โ Real-time CDC โ Autonomous โ โ 50TB โ โ Database โ โโโโโโโโโโโโโโโโ โโโโโโโโโโโโโโโโ โ โ $2M/year $1.4M/year 30% Cost Reduction 4. FRAUD DETECTION ML PIPELINE โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ โ Real-time Fraud Detection โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโค โ Transaction โ Feature โ XGBoost โ Decision โ โ โ โ โ โ โ โ 5M TPS 47 dims <50ms 89% catch โ โ โ โ Sharded DynamoDB (10 tables @ 4K WCU each) โ โ SageMaker Endpoints (auto-scaling 3-100) โ โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ [More architectures available. Type specific project names for details.]
TECHNICAL PUBLICATIONS & THOUGHT LEADERSHIP โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## PHILOSOPHY "I believe in 'boring technology' for critical paths - proven patterns over bleeding edge. Perfect isn't always best: chose 95% optimal in 30sec over 100% optimal in 5min for Docker optimization. My reviews focus on: 'How does this fail?' before 'How does this work?' I choose trade-offs explicitly: DynamoDB over Aurora (10ms vs 50ms), eventual consistency over distributed transactions (10x simpler)." ## OPEN SOURCE PROJECTS โโโ secscan-cli - Multi-language security vulnerability scanner โ โโโ 1.4k+ downloads | Sole creator โโโ Semantic Protocol Layer Translation - AI agent interoperability research โโโ Bidirectional translation for agent communication protocols (Under Review) ## TECHNICAL WRITING โโโ Medium Blog - Cloud architecture & AI/ML insights ## TECHNICAL LEADERSHIP โโโ Architecture Reviews: Weekly design reviews preventing 3 major mistakes โโโ Mentorship: Trained 15+ engineers across AWS, Kubernetes, and ML โโโ Documentation: Created 20+ architectural decision records (ADRs) โโโ Crisis Management: Led incident response for 5 P1 outages, established RCA โโโ Open Source: Maintain security tools with active community engagement [View all publications: medium.com/@deoshankar]
Connecting to deo@cloud-architect... The authenticity of host 'cloud-architect (10.0.13.37)' can't be established. ED25519 key fingerprint is SHA256:xGh3or1c1e/AwesomeCloudArchitect2024. This key is not known by any other names. Are you sure you want to continue connecting (yes/no/[fingerprint])? yes Welcome to Multi-Cloud Architecture System v13.0.0 * Documentation: https://github.com/deosha * Management: Multi-Cloud Control Plane Active * Support: 24/7 Architecture Support Enabled System information as of ${new Date().toLocaleString()} System load: 0.42, 0.69, 1.33 Processes: 313 Usage of /: 13.37% of 100TB Users logged in: 1 Memory usage: 42% IPv4 address: 10.0.13.37 Swap usage: 0% IPv6 address: ::1 => There are 3 cloud migrations pending review => 5 new GenAI models ready for deployment Last login: from your.browser.ip using portfolio [SSH session established. Type 'help' for available commands]
CONTAINER REGISTRY โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ CONTAINER ID IMAGE STATUS PORTS a7f8d9c2e4b1 genai-rag-service:latest Up 47 days 0.0.0.0:8080->8080/tcp b2c3d4e5f6a7 ml-inference-engine:v2.1 Up 23 days 0.0.0.0:5000->5000/tcp c8d9e0f1a2b3 data-pipeline-processor:3.0 Up 15 days 0.0.0.0:9090->9090/tcp d4e5f6a7b8c9 fraud-detection-model:prod Up 12 days 0.0.0.0:8000->8000/tcp e0f1a2b3c4d5 recommendation-api:latest Up 8 days 0.0.0.0:3000->3000/tcp f6a7b8c9d0e1 cost-optimizer:v1.5 Up 5 days 0.0.0.0:8888->8888/tcp a2b3c4d5e6f7 monitoring-dashboard:grafana Up 2 days 0.0.0.0:3001->3000/tcp b8c9d0e1f2a3 vector-database:qdrant Up 18 hours 0.0.0.0:6333->6333/tcp IMAGES REPOSITORY TAG SIZE CREATED genai-rag-service latest 2.3GB 2 months ago ml-inference-engine v2.1 1.8GB 1 month ago data-pipeline-processor 3.0 956MB 3 weeks ago fraud-detection-model prod 1.2GB 2 weeks ago recommendation-api latest 543MB 1 week ago [8 containers running | 15.7GB total disk usage]
KUBERNETES CLUSTER STATUS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ ## DEPLOYMENTS NAME READY UP-TO-DATE AVAILABLE AGE genai-api-gateway 5/5 5 5 120d ml-inference-service 10/10 10 10 89d data-processing 8/8 8 8 67d fraud-detection 3/3 3 3 45d recommendation-engine 6/6 6 6 34d cost-analyzer 2/2 2 2 23d monitoring-stack 4/4 4 4 15d ## PODS NAME READY STATUS RESTARTS AGE genai-api-gateway-7d9b8c6f5-k8s2x 1/1 Running 0 2d genai-api-gateway-7d9b8c6f5-m3n4p 1/1 Running 0 2d genai-api-gateway-7d9b8c6f5-q5r6s 1/1 Running 0 2d ml-inference-service-6c7d8e9f0-a1b2c 1/1 Running 0 5d ml-inference-service-6c7d8e9f0-d3e4f 1/1 Running 0 5d data-processing-5b6c7d8e9-g5h6i 1/1 Running 0 1d fraud-detection-4a5b6c7d8-j7k8l 1/1 Running 0 8h ## SERVICES NAME TYPE CLUSTER-IP EXTERNAL-IP genai-api-gateway LoadBalancer 10.100.200.10 34.123.45.67 ml-inference ClusterIP 10.100.200.20data-processing ClusterIP 10.100.200.30 fraud-detection LoadBalancer 10.100.200.40 35.234.56.78 ## NODES NAME STATUS ROLES VERSION gke-cluster-1-default-pool-1a2b3c4d-5e6f Ready v1.27.3 gke-cluster-1-default-pool-1a2b3c4d-7g8h Ready v1.27.3 gke-cluster-1-gpu-pool-2b3c4d5e-6f7g Ready v1.27.3 [Cluster Health: Optimal | CPU: 42% | Memory: 58% | Pods: 38/110]
TERRAFORM INFRASTRUCTURE STATUS โโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโโ Initializing Terraform... โ Terraform v1.5.7 initialized ## TERRAFORM PLAN Terraform will perform the following actions: # aws_eks_cluster.main will be created + resource "aws_eks_cluster" "main" { + arn = (known after apply) + certificate_authority = (known after apply) + cluster_id = (known after apply) + created_at = (known after apply) + endpoint = (known after apply) + id = (known after apply) + name = "genai-production-cluster" + platform_version = (known after apply) + role_arn = "arn:aws:iam::123456789:role/eks-cluster" + status = (known after apply) + version = "1.27" } # google_container_cluster.primary will be created + resource "google_container_cluster" "primary" { + cluster_ipv4_cidr = "10.0.0.0/14" + endpoint = (known after apply) + id = (known after apply) + location = "us-central1" + name = "ml-inference-cluster" + network = "projects/my-project/global/networks/main" + node_version = "1.27.3-gke.100" } # oci_containerengine_cluster.k8s_cluster will be created + resource "oci_containerengine_cluster" "k8s_cluster" { + compartment_id = "ocid1.compartment.oc1..xyz" + id = (known after apply) + kubernetes_version = "v1.27.2" + name = "data-processing-cluster" + vcn_id = "ocid1.vcn.oc1..abc" } Plan: 3 to add, 0 to change, 0 to destroy ## MANAGED RESOURCES โโโ AWS: 127 resources across 5 regions โโโ GCP: 89 resources across 3 regions โโโ OCI: 45 resources across 2 regions โโโ Azure: 34 resources across 2 regions [Infrastructure as Code: 1000+ resources | 500K+ lines | 100% Automation]