Deo Shankar - Multi-Cloud Solutions Architect

AWS, GCP, Azure, and Generative AI Expert

Welcome to the portfolio of Deo Shankar, a seasoned Multi-Cloud Solutions Architect with over 13 years of experience in designing and implementing enterprise-scale cloud solutions.

Technical Expertise

Key Achievements

Professional Experience

Currently working as an Architect at Tiger Analytics, previously held positions at Oracle Corporation, Paytm, Xebia, Nagarro, Ericsson, and Wipro.

Certifications

AWS Solutions Architect Professional, AWS Machine Learning Specialty, Google Cloud Professional Cloud Architect, Google Cloud Professional ML Engineer, Databricks Certified Data Engineer, Oracle Cloud Infrastructure Architect Professional

Contact Information

Email: jha.deo1771@gmail.com | Phone: +91-9891698505 | Location: Noida, India

LinkedIn: https://linkedin.com/in/deo-shankar | GitHub: https://github.com/deosha

Deo Shankar

Solutions Architect | 13+ Years Experience

๐ŸŽฎ Developer? Try the or use Konami code: โ†‘โ†‘โ†“โ†“โ†โ†’โ†โ†’BA

Contact

๐Ÿ“ง jha.deo1771@gmail.com | ๐Ÿ“ฑ +91-9891698505 | ๐ŸŒ deos.dev

๐Ÿ“ Noida, India | ๐Ÿ’ผ LinkedIn | ๐Ÿ™ GitHub

Key Achievements

  • ๐Ÿš€ 5M+ Daily Transactions with 99.9% availability (@ Paytm Payment Systems)
  • ๐Ÿ“Š 15TB Daily Data Processing at scale (@ Tiger Analytics)
  • ๐Ÿ’ฐ 40% Cost Reduction achieved (@ Oracle Cloud)
  • ๐Ÿค– 87% F1 score on RAG platform with LangGraph + MCP (@ Tiger Analytics)
  • ๐ŸŽฏ 60% reduction in AI hallucinations (@ Tiger Analytics)

๐Ÿ† Open Source & Research Contributions

๐Ÿ“š

Research in Review

Semantic Protocol Layer Translation for AI Agent Interoperability

Novel approach to bidirectional protocol translation enabling seamless communication between heterogeneous AI agents

๐ŸŽ“ Academic Paper ๐Ÿ“ Under Review ๐Ÿš€ Production Tested
Read Draft Paper โ†’
๐Ÿ›ก๏ธ

Open Source Security Tool

secscan-cli

Multi-language security vulnerability scanner supporting Python, JavaScript, Java, and Go codebases

๐Ÿ“ฆ 1.4k+ Downloads ๐Ÿ‘จโ€๐Ÿ’ป Sole Creator ๐Ÿ”ง Active Development
View on PyPI โ†’
PyPI Weekly Downloads 247
Paper Status Under Review
Code Coverage 94%
Security Score A+

Core Expertise

Cloud Computing (AWS/GCP/OCI) Generative AI (GenAI) Agentic AI Systems RAG Architecture Distributed Systems Event-Driven Architecture ML/Transformers Kubernetes Infrastructure as Code

Recent Projects

  • Generative AI RAG Platform 2M+ documents โ€ข 87% F1 Score
  • High-Scale Payment System 5M+ txn/day โ€ข 99.9% uptime
  • Container Optimization Platform 95% size reduction โ€ข $300K/month saved

Experience

  • Tiger Analytics - Architect
    2023 - Present
  • Oracle Corporation - Sr. Cloud Engineer
    2020 - 2022
  • Paytm - Technical Lead
    2019 - 2020

๐Ÿ’€ My Biggest Failure (And What I Learned)

October 19, 2019 - The Diwali Sale Disaster

1M users. 37 seconds. Complete system failure.

$3M lost in potential sales. Customer trust damaged. My architecture. My fault.

The Problem:

  • Connection pool exhaustion (not CPU or memory)
  • Each payment opened 3 DB connections (payment, user, merchant)
  • No circuit breakers, no graceful degradation
  • Monitoring showed green while users saw red

The 8-Week Rebuild:

  • Implemented event sourcing with Kinesis
  • Sharded DynamoDB across 10 tables (bypassed 40K WCU limit)
  • Added ProxySQL for connection multiplexing
  • Built circuit breakers at every integration point

Result: Scaled from 1M crash โ†’ 5M+ TPS success. No downtime since.

"Failure is the best teacher. This disaster made me the architect I am today."

๐Ÿ”ฅ Unpopular Opinions (That I'll Defend)

"Kubernetes is overkill for 90% of startups"

You're not Google. You don't need K8s for 10 containers. ECS Fargate or even EC2 with systemd will save you hundreds of engineering hours. I've seen startups die while perfecting their K8s setup instead of shipping features.

"GraphQL was a mistake - here's why"

N+1 query problems, complex caching, security nightmares (query depth attacks), and junior developers creating performance disasters. REST with proper versioning beats GraphQL 9 times out of 10. I've ripped out GraphQL from 3 projects and never looked back.

"Boring technology is beautiful"

PostgreSQL > MongoDB for 95% of use cases. EC2 > Kubernetes for <100 containers. REST > GraphQL. Monolith-first > Microservices-first. I chose "boring" tech at Paytm and saved $2M/year while others debugged their "cutting-edge" distributed traces.

"AI won't replace developers, but developers who refuse to use AI will be replaced"

I write 70% less boilerplate now. GitHub Copilot, ChatGPT, and Claude are force multipliers. Developers fighting AI tools are like accountants refusing Excel in the 1980s. Adapt or become irrelevant.

"Multi-cloud is usually multi-stupid"

Unless you're Netflix, pick one cloud and go deep. Multi-cloud means lowest common denominator features, 3x the complexity, and none of the expertise. I've seen more companies fail from multi-cloud complexity than from vendor lock-in.

"Strong opinions, loosely held. Prove me wrong and I'll buy you coffee โ˜•"

๐Ÿ“ Latest Articles & Thoughts

View All Articles on Medium โ†’

๐Ÿ’ฌ What Colleagues Say

NK

Nitin Kaushik

Director - Cloud Solution Engineering at Oracle

Managed Deo directly at Oracle

"I have known Deo for last 2 years since the time he has joined Oracle. He has excellent technical knowledge around cloud solutions right from automation, IaaS, DevOps to Networking etc. He articulates his thoughts very well while delivering a session or having a deep technical conversation with customers or colleagues. His positive attitude and never say 'No' even in a toughest of situations is an asset for any organization. Above all a great human being."

View on LinkedIn โ†’

View Full Recommendation on LinkedIn โ†’

System Architecture Designs

1. Agentic RAG Platform with LangGraph + MCP + Bedrock (87% F1 Score)

User Query Layer L1 Support Agents API Gateway Rate Limiting | Auth | Load Balancing LangGraph Orchestrator Self-Correction Loops | Multi-Agent Coordination Extract Validate Correct Response MCP Protocol Server 30+ Specialized AI Agents Tool Registry | Message Bus 60% Hallucination Reduction AWS Bedrock Claude 3 | Titan | Llama Multi-Model Strategy 87% F1 Score OpenSearch Vector DB 2M+ Documents Semantic Search 100ms P99 Latency Data Persistence Layer S3 Data Lake Policy Docs | Claims DynamoDB Session State | Cache Aurora PostgreSQL Metadata | Analytics CloudWatch Metrics | Alarms Performance Metrics: โ€ข Response Time: 3 min (was 15 min) โ€ข Accuracy: 87% F1 Score โ€ข Hallucination Rate: 7.2% (was 18%) โ€ข Cost Savings: $2M/year โ€ข Documents Processed: 2M+ โ€ข Agent Collaboration: 30+ agents

2. High-Scale Payment Platform (5M+ TPS with Event Sourcing)

5M+ Transactions Per Second ALB Cluster API Gateway ProxySQL Event Sourcing Layer Kinesis Shard 1 1M TPS Kinesis Shard 2 1M TPS Kinesis Shard 3 1M TPS Kinesis Shard 4 1M TPS Kinesis Shard 5 1M TPS Lambda Event Processors Auto-scaling: 100-10,000 concurrent 15ms avg processing time DynamoDB Event Store (Sharded) Table Shard 0 4K WCU 10K RCU 500K TPS Table Shard 1 4K WCU 10K RCU 500K TPS ... Table Shard 9 4K WCU 10K RCU 500K TPS Circuit Breaker Hystrix Fallback Logic 99.9% uptime RDS Read Replicas Async Projection 100ms eventual consistency ElastiCache Redis Hot Data Cache 1ms latency SageMaker Endpoint Fraud Detection 89% catch rate

3. Docker Image Optimization Platform (3.5GB โ†’ 350MB)

Dockerfiles 100+ Teams Avg: 3.5GB Heuristic Optimization Engine Merge RUN Commands -40% layers Slim Base Images -60% size Multi-Stage Builds -70% size Optimized Images 95% reduction Avg: 350MB Before vs After Comparison BEFORE Optimization โ€ข Image Size: 3.5GB โ€ข Build Time: 25 min โ€ข Deploy Time: 15 min โ€ข ECR Cost: $500K/month โ€ข Layers: 47 average โ€ข Cache Hit: 20% โ€ข Dev Feedback: 5 min AFTER Optimization โ€ข Image Size: 350MB โ€ข Build Time: 5 min โ€ข Deploy Time: 3 min โ€ข ECR Cost: $200K/month โ€ข Layers: 12 average โ€ข Cache Hit: 85% โ€ข Dev Feedback: 30 sec Impact Metrics 90% Size Reduction $300K/mo Saved 80% Faster Deploys 95% Adoption

4. MCP-Based Multi-Agent Orchestration (30+ Agents)

MCP Protocol Message Bus Tool Registry Data Agents ETL SQL NoSQL Stream Batch ML Agents Train Infer Eval NLP Vision Code Agents Review Gen Test Debug Doc Ops Agents Deploy Monitor Alert Scale Heal Hallucination: -60% Tool Reuse: 80% Dev Speed: 3x Bidirectional Protocol Translation | Event-Driven Communication | Tool Discovery
deo@cloud-architect:~
โ•”โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•—
โ•‘                                                                                    โ•‘
โ•‘  โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—     โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•—  โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ•—   โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•—  โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•— โ•‘
โ•‘  โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•โ–ˆโ–ˆโ•”โ•โ•โ•โ–ˆโ–ˆโ•—    โ–ˆโ–ˆโ•”โ•โ•โ•โ•โ•โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ•—  โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ•‘
โ•‘  โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—  โ–ˆโ–ˆโ•‘   โ–ˆโ–ˆโ•‘    โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ• โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•โ•‘
โ•‘  โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ•  โ–ˆโ–ˆโ•‘   โ–ˆโ–ˆโ•‘    โ•šโ•โ•โ•โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘โ•šโ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ•— โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•”โ•โ•โ–ˆโ–ˆโ•—โ•‘
โ•‘  โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•—โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•”โ•    โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘ โ•šโ–ˆโ–ˆโ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•—โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•‘โ–ˆโ–ˆโ•‘  โ–ˆโ–ˆโ•‘โ•‘
โ•‘  โ•šโ•โ•โ•โ•โ•โ• โ•šโ•โ•โ•โ•โ•โ•โ• โ•šโ•โ•โ•โ•โ•โ•     โ•šโ•โ•โ•โ•โ•โ•โ•โ•šโ•โ•  โ•šโ•โ•โ•šโ•โ•  โ•šโ•โ•โ•šโ•โ•  โ•šโ•โ•โ•โ•โ•šโ•โ•  โ•šโ•โ•โ•šโ•โ•  โ•šโ•โ•โ•šโ•โ•  โ•šโ•โ•โ•‘
โ•‘                                                                                    โ•‘
โ•‘                    MULTI-CLOUD SOLUTIONS ARCHITECT v13.0.0                        โ•‘
โ•‘                 [ AWS | GCP | OCI | AZURE | Databricks | Snowflake]               โ•‘
โ•šโ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•โ•
                
[ OK ] Starting cloud-architect.service... [ OK ] Loading AWS modules... [ OK ] Loading GCP modules... [ OK ] Loading OCI modules... [ OK ] Initializing GenAI services... [ OK ] System ready.